Highly fabrication tolerant InP based polarization beam splitter based on p-i-n structure.

نویسندگان

  • Nicolás Abadía
  • Xiangyang Dai
  • Qiaoyin Lu
  • Wei-Hua Guo
  • David Patel
  • David V Plant
  • John F Donegan
چکیده

In this work, a novel highly fabrication tolerant polarization beam splitter (PBS) is presented on an InP platform. To achieve the splitting, we combine the Pockels effect and the plasma dispersion effect in a symmetric 1x2 Mach-Zehnder interferometer (MZI). One p-i-n phase shifter of the MZI is driven in forward bias to exploit the plasma dispersion effect and modify the phase of both the TE and TM mode. The other arm of the MZI is driven in reverse bias to exploit the Pockels effect which affects only the TE mode. By adjusting the voltages of the two phase shifters, a different interference condition can be set for the TE and the TM modes thereby splitting them at the output of the MZI. By adjusting the voltages, the very tight fabrication tolerances known for fully passive PBS are eased. The experimental results show that an extinction ratio better than 15 dB and an on-chip loss of 3.5 dB over the full C-band (1530-1565nm) are achieved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design of Photonic Crystal Polarization Splitter on InP Substrate

In this article, we suggested a novel design of polarization splitter based on coupler waveguide on InP substrate at 1.55mm wavelength. Photonic crystal structure is consisted of two dimensional (2D) air holes embedded in InP/InGaAsP material with an effective refractive index of 3.2634 which is arranged in a hexagonal lattice. The photonic band gap (PBG) of this structure is determined using t...

متن کامل

Design of Photonic Crystal Polarization Splitter on InP Substrate

In this article, we suggested a novel design of polarization splitter based on coupler waveguide on InP substrate at 1.55m wavelength. Photonic crystal structure is consisted of two dimensional (2D) air holes embedded in InP/InGaAsP material with an effective refractive index of 3.2634 which is arranged in a hexagonal lattice. The photonic band gap (PBG) of this structure is determined using t...

متن کامل

Ultracompact and fabrication-tolerant integrated polarization splitter.

Design and fabrication of a 2×2 two-mode interference (TMI) coupler based on-chip polarization splitter is presented. By changing the angle between the access waveguides, one can tune the effective TMI length for the mode with less optical confinement (transverse magnetic, TM) to coincide with the target TMI length for a desired transmission of the mode with higher optical confinement (transver...

متن کامل

Novel ultra-short and ultra-broadband polarization beam splitter based on a bent directional coupler.

A novel ultra-short polarization beam splitter (PBS) based on a bent directional coupler is proposed by utilizing the evanescent coupling between two bent optical waveguides with different core widths. For the bent directional coupler, there is a significant phase-mismatch for TE polarization while the phase-matching condition is satisfied for TM polarization. Therefore, the TM polarized light ...

متن کامل

Design, Optimization, and Fabrication of Side-Illuminated p-i-n Photodetectors With High Responsivity and High Alignment Tolerance for 1.3- and 1.55- m Wavelength Use

In this paper, we describe the design, optimization and fabrication of side-illuminated p-i-n photodetectors, grown on InP substrate, suitable for surface hybrid integration in low-cost modules. The targeted functionalities of these photodetectors were a very high responsivity at 1.3and 1.55m wavelengths and quasi-independent on the optical polarization, and had a high alignment tolerance. More...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optics express

دوره 25 9  شماره 

صفحات  -

تاریخ انتشار 2017